
Algernon for Expert Systems�

Benjamin Kuipers

Computer Science Department

University of Texas at Austin

Austin, Texas 78712 USA

18 January 1994

Abstract

This is a DRAFT document, showing how to express various kinds of useful inference in

Algernon.

�This work has taken place in the Qualitative Reasoning Group at the Arti�cial Intelligence Laboratory, The

University of Texas at Austin. Research of the Qualitative Reasoning Group is supported in part by NSF grants

IRI-8904454, IRI-9017047, and IRI-9216584, and by NASA contracts NCC 2-760 and NAG 9-665. The original

development of Algernon was supported in part by the Texas Advanced Research Program under grant no. 003658-

175.

1

Algernon for Expert Systems DRAFT: 18 January 1994 2

Contents

1 Introduction to Frame Based Knowledge Representation 3

1.1 Frames : 3
1.2 Frames and Their Names : 3
1.3 Frames and Predicate Calculus : 4
1.4 Access Paths : 4
1.5 Rules Are Implications : 5
1.6 Inference in Algernon : 5

2 Example: Frames, Access Paths, and Retrieval by Description 7

2.1 Calling Algernon from Lisp : 7
2.2 The Structure of an Algernon Theory : 7
2.3 Taxonomy : 8
2.4 Slots Represent Relations : 8
2.5 Rules Specify Inferences : 9
2.6 Facts Tell the Story : 10
2.7 Questions: Checking for Understanding : 12

3 Example: Forward- and Backward-Chaining Inference 15

3.1 Taxonomy : 15
3.2 Slots : 15
3.3 Rules : 15
3.4 Facts : 17
3.5 Queries : 18

4 A Simple Expert System: Does John Have The Flu? 20

4.1 Taxonomy and Slots : 20
4.2 Rules { Simple : 20
4.3 Queries Based on Simple Rules : 21
4.4 Rules { Slightly Less Simple : 24
4.5 Queries { Slightly Less Simple Rules : 25

5 Calling Lisp and the User from Algernon 27

5.1 Evaluating Lisp Expressions : 27
5.2 Returning Values from Lisp to Algernon : 29
5.3 The List of Values in a Slot : 31
5.4 Requesting Information from the User : 32

6 Sequencing Methods 36

6.1 Access Path Sequence : 36
6.2 Block-to-Block Sequence : 36
6.3 Counters : 37

Algernon for Expert Systems DRAFT: 18 January 1994 3

1 Introduction to Frame Based Knowledge Representation

1.1 Frames

Frames are descriptions of conceptual individuals. Frames can exist for \real" objects such as
\The Watergate Hotel", sets of objects such as \Hotels", or more \abstract" objects such as \Cola-
Wars" or \Watergate". Frames are essentially de�ned by their relationships with other frames.
Relationships between frames are represented using slots. If a frame f is in a relationship r to a
frame g, then we put the value g in the r slot of f.

For example, suppose we are describing the following genealogical tree:

Adam Beth

EllenDonnaCharles

The frame describing Adam might look something like:

Adam:

sex: Male

spouse: Beth

child: (Charles Donna Ellen)

where sex, spouse, and child are slots. Note that a single slot may hold several values (e.g.the
children of Adam).

The genealogical tree would then be described by (at least) seven frames, describing the following
individuals: Adam, Beth, Charles, Donna, Ellen, Male, and Female.

1.2 Frames and Their Names

Actually, this is not quite right. For initial presentation, we have allowed a certain amount of
confusion between the thing itself, and its name. Really, the frame for Adam would look something
like:

frame-27:

name: ("Adam")

sex: (frame-2)

spouse: (frame-28)

child: (frame-29 frame-30 frame-31)

A frame has two di�erent types of name.

� Every frame has a single true name (tname), which is a symbol referring uniquely to that
frame. In the Lisp implementation, the tname is the Lisp symbol on whose property list the
frame structure is stored. In the example above, it is frame-27.

� A frame can have any number of public names (pnames), which are strings, and need not be
uniquely referring. Public names are stored as values in the name slot of the frame. There is
also an indexing mechanism that allows frames to be retrieved, given a public name.

Algernon for Expert Systems DRAFT: 18 January 1994 4

True names are the pointers from one frame to another that actually represent the structure of
the knowledge base. Public names are for communication with other agents.

For ease of debugging and interaction, when a frame is created with a simple public name,
Algernon attempts to generate a true name that has the same or similar printed representation.
Similarly, the user interface attempts to retrieve the desired frame, whether you type its true name
or its public name. However, this should be treated as a happy coincidence when it happens.

1.3 Frames and Predicate Calculus

A frame can be considered just a convenient way to represent a set of predicates applied to constant
symbols (e.g.ground instances of predicates.). For example, the frame above could be written:

sex(Adam,Male)

spouse(Adam,Beth)

child(Adam,Charles)

child(Adam,Donna)

child(Adam,Ellen)

More generally, the ground predicate r(f; g) is represented, in a frame based system, by placing
the value g in the r slot of the frame f [Hayes, 1979]:

r(f; g) �

f:
r:

values: f : : :g : : : g

Throughout this document we use the teletype font for Algernon statements and the italic

font for predicate calculus. We use standard predicate calculus notation except that we �nd it
convenient to use ! in addition to the usual .

1.4 Access Paths

One advantage of a frame based representation is that the (conceptual) objects related to a frame
can be easily accessed by looking in a slot of the frame (there is no need, for example, to search the
entire knowledge-base). We de�ne an access path, in a network of frames, as a sequence of frames
each directly accessible from (i.e.appearing in a slot of) its predecessor. A sequence of predicates
de�nes an access path i� any variable appearing as the �rst argument to a predicate has appeared
previously in the sequence. For example, \John's parent's sister" can be expressed in Algernon as
the path:

((parent John ?x) (sister ?x ?y))

(variables are represented in Algernon by Lisp atoms whose print names begin with `?'). The
Algernon path ((parent John ?x) (sister ?x ?y)) is equivalent to the syntactically similar
predicate calculus statement:

parent(John; ?x) ^ sister(?x; ?y):

Algernon for Expert Systems DRAFT: 18 January 1994 5

In predicate calculus this statement is equivalent to

sister(?x; ?y) ^ parent(John; ?x):

However, the corresponding sequence of predicates:

((sister ?x ?y) (parent John ?x))

is not an access path because a query of (sister ?x ?y) requires a search of every frame in the
entire knowledge-base.

1.5 Rules Are Implications

We represent logical implications as rules. For example, the logical assertion that

8x; y:[spouse(x; y)! spouse(y; x)]

can be represented by the forward-chaining rule:

((spouse ?x ?y) -> (spouse ?y ?x))

Intuitively, such a rule says that whenever we learn a relation (spouse f g) we should immediately
conclude (spouse g f). Such forward-chaining (\if-added") rules are generally used to maintain
invariants in the knowledge-base.

Algernon also allows backward-chaining (\if-needed") rules. For example,

((aunt John ?y) <- (parent John ?x) (sister ?x ?y)) (1)

Intuitively, this rule says that if you need to �nd an aunt of John then you should look for a parent
of John, and then a sister of that parent. Notice that the antecedent of this rule is an access path.
All rules in Algernon must de�ne access paths. Thus the implication:

((aunt John ?y) <- (sister ?x ?y) (parent John ?x))

is not allowed since the only way to \�re" this rule would be to search globally for all frames in the
knowledge-base that have a sister relation with other frames.

The backward-chaining rule (1) represents the content of the logical implication

8x; y:[parent(John; x)^ sister(x; y)! aunt(John; y)]

but with the added knowledge (or restriction) that the implication should only be used to satisfy
a query of aunt(John; y).

1.6 Inference in Algernon

There are two basic operations on a knowledge-base | queries and assertions. Queries retrieve
knowledge from the knowledge-base, applying if-needed rules, while assertions add facts to the
knowledge-base and apply if-added rules. Of course, a successful if-needed rule will assert its
consequent into the knowledge-base, and the antecedent of an if-added rule may have additional

Algernon for Expert Systems DRAFT: 18 January 1994 6

formulas to be queried, so the two operations are not disjoint. The rules in an Algernon knowledge-
base are organized into small packets by being associated either with frames representing sets, or
with slots.

To understand how this works, consider a knowledge-base of frames and rules representing the
following genealogy:

JanetIsaac

Frank

Adam Beth

EllenDonnaCharles Gertrude Hazel

There is also a frame People, representing the set of all people. We assert the relation isa (rep-
resenting the membership relation between an object and a set containing it) between each frame
for a person in the genealogy and the frame People (i.e.(isa Adam People), (isa Beth People),
: : :). We may associate the rule:

((aunt ?z ?y) <- (parent ?z ?x) (sister ?x ?y)) (2)

with the frame People. Formally this means:

(8z; x; y:(isa(z; People)! [aunt(z; y) parent(z; x)^ sister(x; y)]))

Operationally, this means that any query to the aunt slot of a frame that has an isa relation
to the frame People will result in the application of this rule. A rule is applied by �rst querying its
antecedent and then, if the antecedent succeeds, asserting its consequent. Querying the antecedent
of a rule �nds all consistent sets of bindings to the variables in the antecedent. One instance of the
consequent is asserted for each binding set, with variables replaced by values in the binding set.
This means that retrieval guided by an access path branches on the values in a slot that provide
possible bindings for a variable.

For example, if we query (aunt Janet ?x), then rule (2) will apply, with ?z bound to Janet.
The path will immediately branch on the values in the parent slot of Janet: bindings of ?x to
Ellen or Frank. If ?x is bound to Ellen, then Algernon will query (sister Ellen ?y), which
binds ?y to Donna, so it will conclude and assert (aunt Janet Donna). However, along the branch
where x is bound to Frank, retrieval of (sister Frank ?y) will branch on two possibilities, so
Algernon will also conclude and assert that (aunt Janet Gertrude) and (aunt Janet Hazel).

Rules may also (less commonly) be associated with slots or sets of slots. If an if-added rule is
associated with a slot r, or with a set of which r is a member, then it is applied whenever a value is
added to the r slot of any frame (if-needed rules associated with slots and sets of slots are similar).
For example, one might want to put the slot less in the set of partial orders, and thus inherit
rules, associated with the set of partial orders, for transitivity, reexivity, and antisymmetry.

By associating rules with sets of individuals, or with slots representing speci�c relations, we are
imposing a semantically-motivated organization on the knowledge-base, which clari�es the structure
of its knowledge. We are also limiting access to those rules, thereby reducing the number of times
their antecedents must be tested, and hence gaining e�ciency.

Algernon for Expert Systems DRAFT: 18 January 1994 7

2 Example: Frames, Access Paths, and Retrieval by Description

In this and the following sections, many of the features of Algernon will be illustrated by means of
simple examples.

2.1 Calling Algernon from Lisp

An Algernon knowledge-base can be regarded as the knowledge about the world possessed by an in-
dividual agent. Algernon interacts with the world through a tell/ask (or equivalently, assert/query)
interface by which we tell things to Algernon and ask questions of the knowledge-base.

tell path &key :retrieve :eval :collect :comment

ask path &key :retrieve :eval :collect :comment

The functions tell and ask assert or query a given access path in the context of the Algernon
knowledge base. These operations may branch on multiple bindings while following the path. If
the keyword :retrieve is t, only facts explicitly stored in the KB are retrieved, and no backward-
chaining rules are invoked. If no sets of bindings are found, the operation fails and nil is returned.

If the operation succeeds, then the Lisp forms provided for the :eval and :collect keywords
are instantiated with values substituted for Algernon variables in each binding found. The :eval

forms are evaluated, and the :collect forms are collected and returned. If no :collect form is
provided, t is returned after a successful operation. The :comment string may be printed as trace
output.

2.2 The Structure of an Algernon Theory

A theory in Algernon has a conventional format, which is not strictly required, but greatly simpli�es
creation and understanding of the program. It normally consists of the following �ve sections.

1. Taxonomy: de�ne a containment hierarchy of sets of objects that appear in the theory and
certain individual elements of those sets.

2. Slots: de�ne the relations that may hold among those objects.

3. Rules: de�ne the forward- and backward-chaining inferences that can take place using those
relations.

4. Facts: assert the speci�c facts of the situation to be reasoned about. Forward-chaining
rules invoked by the assertion of these facts, and backward-chaining rules invoked by the
antecedents of those rules, may cause a signi�cant amount of inference to take place.

5. Queries: query the knowledge base for desired information. Backward-chaining rules invoked
by the query, and forward-chaining rules invoked by assertion of deduced information, may
also add additional facts to the knowledge-base.

The taxonomy and slots together constitute the ontology of the theory: what objects and
relationships are describable within it.

Algernon for Expert Systems DRAFT: 18 January 1994 8

2.3 Taxonomy

The Algernon knowledge base starts with an ontology of fundamental sets and a few individual
objects.

(tell '((:taxonomy (things

(rules)

(objects

(sets things objects sets slots partitions

(partitions main-partition set-partition

slot-info-partition partition-partition))

(booleans true false :complete)

(contexts *context*))

(slots

(order-relations

(tc-order-relations

(equivalence-relations))))))))

Additional sets and individuals can be de�ned using the :taxonomy form. Each :taxonomy form
asserts a tree-structured set of containment and membership relations between sets and elements.
A set is described by a list whose �rst element is its name, whose sublists are descriptions of its
subsets, and whose atomic elements are names of its elements. Subsets are not necessarily disjoint.
Lattice-structured containment hierarchies can be asserted using multiple :taxonomy forms. The
set at the root of the taxonomy must already exist, and all names must be uniquely designating.
By convention, the names of sets are plural nouns.

The above example describes part of the taxonomy created in the background knowledge base.
The set things contains at least the subsets rules, objects, and slots. The set booleans

contains exactly the two elements true and false. Several of the sets in the hierarchy are also
explicitly declared as individual elements of the set sets, but those individuals are not completely
enumerated.

The following creates, names, and asserts some additional subsets to the set objects, including
the new set time-units and its element years.

(tell '((:taxonomy (objects

(physical-objects

(people))

(physical-attributes

(genders male female))

(time-units years)))))

2.4 Slots Represent Relations

A slot represents a relation among individuals, and is declared using :slot. The domain of an
n-ary relation is the cross-product of n sets, which are speci�ed in the second argument to the
:slot form. The �rst argument is the name of the relation. By convention, the name P of a
relation P (a; b) is chosen to �t the template, \The P of a is b."

The :cardinality keyword speci�es how many distinct values can consistently be in a slot. For
example, spouse can only have one value, but grandparent would have :cardinality 4. (Modern
family structure is beyond the scope of this document.) The friend slot has no bound.

Algernon for Expert Systems DRAFT: 18 January 1994 9

Binary relations of :cardinality 1 are functions, de�ning mapping from individuals in the
�rst domain to individuals in the second domain. Functions support certain inferences that don't
apply to more general relations.

The :backlink keyword declares an inverse relation, and a forward chaining rule from the
current relation to its inverse. The :inverse keyword is similar, but creates backlink rules in both
directions. The :comment keyword is purely for documentation.

(tell '((:slot spouse (people people)

:cardinality 1

:backlink spouse

:comment "(spouse a b) = The spouse of a is b.")

(:slot wife (people people)

:cardinality 1

:backlink spouse

:comment "(wife a b) = The wife of a is b.")

(:slot husband (people people)

:cardinality 1

:inverse wife

:comment "(husband a b) = The husband of a is b.")

(:slot friend (people people)

:comment "(friend a b) = A friend of a is b.")))

Unlike the above binary relations, age is a three place relation between a physical object, its
age, and the time-unit the age is measured in. Since the age will be represented by a Lisp object
(i.e., a number), the keyword :number indicates that the second argument is represented by an
object belonging to the Lisp datatype number, rather than by an Algernon frame.

(tell '((:slot age (physical-objects :number time-units)

:cardinality 1)))

2.5 Rules Specify Inferences

The rules in the Algernon knowledge-base determine which inferences will take place. Here, we
give two rules that show how the husband and wife relations determine gender of the participants.
Along with the rules implied by the :backlink and :inverse keywords to the :slot declarations,
these rules �ll out the implications of a single asserted relationship between two people.

(tell '((:rules people

((wife ?x ?p1) -> (gender ?p1 female))

((husband ?x ?p1) -> (gender ?p1 male)))))

Rules are associated with sets, so the above rules are only considered in case the variable ?x is
bound to an individual known to belong to the set people.

Relatively little is known about controlling mixed forward- and backward-chaining inference,
so many systems are restricted to only one direction. This example uses only forward-chaining
inference, but later examples will demonstrated mixed inference. One convention that appears to be

Algernon for Expert Systems DRAFT: 18 January 1994 10

useful is to use forward-chaining rules to maintain invariants that should be true of the information
explicitly appearing in the KB, and backward-chaining rules to do search-based problem-solving.
Other conventions are certainly possible.

2.6 Facts Tell the Story

This little story illustrates the use of Algernon to represent the meaning of a simple narrative. It
creates frames to represent the individuals involved, asserts and deduces relationships among them.

An important feature is the use of de�nite descriptions to retrieve the individual about which
an assertion should be made. In Algernon, a de�nite description is an access path that is believed
to be adequate, in context, to specify a unique individual.

It is worth noting how easliy the Algernon access paths could be derived from the English
sentences they correspond to.

� The function tell takes an Algernon access path to assert, and optionally a comment string.
There is a corresponding function ask.

Since de�nite descriptions require context, we create a frame with true-name ja-story to
represent the current story, and put it into the current slot of the global context frame,
which is named *context*.1 When the frame bound to ?ja-story is �rst created, it belongs
to no sets, but the domains associated with the relation current allow Algernon to infer that
it belongs to the set contexts.

(tell '((:create ?ja-story ja-story)

(:clear-slot *context* current)

(current *context* ?ja-story)))

The e�ect of tell is a change to the structure of the Algernon knowledge-base. With appro-
priate trace switches set, Algernon will also print a trace message, a description of the set of
bindings created by the assertion or query, and a list of newly created frames.

� A �rst-person pronoun (\I", \me", \my", etc.) is a de�nite description referring to the
current speaker. This is an attribute of the current context. A de�nite description, speci�ed
by the Algernon special form :the, will do \�nd-or-create retrieval", creating a new frame
and asserting the description about it if no existing match is found.

Once the frame representing the speaker has been found, facts such as name and age can be
asserted to it.

(tell '((:the ?me (speaker (current *context*) ?me))

(name ?me "John Alden"))

:comment "My name is John Alden.")

(tell '((:the ?me (speaker (current *context*) ?me))

(age ?me 25 years))

:comment "I am 25 years old.")

1
:create is obsolete. Use :a instead.

Algernon for Expert Systems DRAFT: 18 January 1994 11

� The de�nite description \my wife" here causes the creation of a new frame to represent John's
wife. The rules we have already seen allow Algernon to infer the appropriate set of husband,
spouse, and gender relations.

Any mentioned frame, other than the speaker, is added to the recent slot of the current
context, for later retrieval using third person pronouns. This serves as a place-holder for a
more serious focus mechanism.

(tell '((:the ?me (speaker (current *context*) ?me))

(:the ?w (wife ?me ?w))

(age ?w 23 years)

(recent (current *context*) ?w))

:comment "My wife is 23 years old.")

The following example of trace output was produced by this assertion. A single set of
bindings resulted from asserting the given access path, and those bindings are shown. The
variables ?$x13 and ?$x14 were automatically generated to represent the results of retriev-
ing (current *context*). The variable ?me is bound to the frame frame1, which is the
true name of the frame describing John Alden. The name slot of frame1 holds the string
"John Alden", so that is shown. The variable ?w is bound to the frame frame1-wife, which
was created without a public name, though we will learn it in the next sentence.

ASSERTING: My wife is 23 years old.

Input preds: (:the ?me (speaker (current *context*) ?me))

(:the ?w (wife ?me ?w)) (age ?w 23 years)

(recent (current *context*) ?w)

Result:

Bindings: ?$x14 --- ja-story

?w --- frame1-wife

?me --- frame1 "john alden"

?$x13 --- ja-story

Created frame: frame1-wife

=> T

� The de�nite description \she" or \her" retrieves a recently mentioned female.

(tell '((:the ?her

(recent (current *context*) ?her)

(gender ?her female))

(name ?her "Priscilla"))

:comment "Her name is Priscilla.")

� In the following sentence, we have used :forc (�nd or create) to represent the inde�nite
description, \a friend named Miles Standish". It would also be possible to use :a (create

Algernon for Expert Systems DRAFT: 18 January 1994 12

new) to create a new frame representing \a friend", and assert the name and gender of Miles
Standish to that frame. (The gender is necessary because Algernon doesn't know that \Miles"
is a man's name.)

(tell '((:the ?she

(recent (current *context*) ?she)

(gender ?she female))

(:forc ?ms

(friend ?she ?ms)

(name ?ms "Miles Standish")

(gender ?ms male)

(recent (current *context*) ?ms))

:comment "She has a friend named Miles Standish.")

� The de�nite description \he" can retrieve the description of Miles from context because he is
the only recently mentioned male. This primitive context mechanism can't even give priority
to recency, so once a second male is mentioned, it will fail.

(tell '((:the ?he

(recent (current *context*) ?he)

(gender ?he male))

(age ?he 40 years))

:comment "He is 40 years old.")

� A name is also a de�nite description. In simple cases like this one with uniquely-referring
single-word names, the Algernon syntactic preprocessor can recognize that Priscilla refers
to a unique frame and substitute it into the access path. The :forc creates a frame describing
Cotton Mather.

(tell '((:forc ?cm

(friend Priscilla ?cm)

(name ?cm "Cotton Mather")

(gender ?cm male))

(recent (current *context*) ?cm))

:comment "Priscilla also has a friend named Cotton Mather.")

2.7 Questions: Checking for Understanding

We test whether a human has understood a story by asking questions, �rst to check on retention
of explicitly stated facts, then for the ability to draw reasonable conclusions.

� We return attention to the John Alden story from whatever else we were doing, by explicitly
making its context frame, ja-story, the current context.

(tell '((:clear-slot *context* current)

(current *context* ja-story))

:comment "In the John Alden story ...")

Algernon for Expert Systems DRAFT: 18 January 1994 13

� This question follows the access path from context, to speaker, to wife, to age. Her name is
only retrieved for nicely presenting the output.

(ask '((:the ?me (speaker (current *context*) ?me))

(:the ?w (wife ?me ?w))

(age ?w ?a ?units)

(name ?w ?n))

:collect '(?n is ?a ?units old)

:comment "How old is my wife?")

The :collect keyword provides restructured output.

QUERYING: How old is my wife?

Input preds: (:the ?me (speaker (current *context*) ?me))

(:the ?w (wife ?me ?w)) (age ?w ?a ?units) (name ?w ?n)

Result:

Bindings: ?n --- "priscilla"

?units --- years

?a --- 23

?w --- frame1-wife "priscilla"

?me --- frame1 "john alden"

?$x20 --- ja-story

=> (("Priscilla" IS 23 YEARS OLD))

� This question checks that obvious inferences were made from the given information, by re-
trieving Priscilla's husband and then his name.

(ask '((husband Priscilla ?h)

(:eval (pp-frame '?h))

(name ?h ?n))

:comment "Who is Priscilla's husband?"

:collect '?n)

The special :eval form applies the lisp function pp-frame to the frame bound to the variable
?h, to display it on the terminal. Then the name is returned.

QUERYING: Who is Priscilla's husband?

Input preds: (husband priscilla ?h) (:eval (pp-frame (quote ?h)))

(name ?h ?n)

Frame1:

Isa: things objects physical-objects people

Algernon for Expert Systems DRAFT: 18 January 1994 14

Name: "john alden"

Age: (25 years)

Wife: frame1-wife

Gender: male

Spouse: frame1-wife

Result:

Bindings: ?n --- "john alden"

?h --- frame1 "john alden"

=> ("John Alden")

� This question has more than one answer, so both are returned.

(ask '((name (friend Priscilla) ?name))

:comment "What is Priscilla's friend's name ?"

:collect '?name)

Here we collect two names into a list.

QUERYING: What is Priscilla's friend's name ?

Input pred: (name (friend priscilla) ?name)

Result (1 of 2):

Bindings: ?name --- "cotton mather"

?$x21 --- |cotton mather|

Result (2 of 2):

Bindings: ?name --- "miles standish"

?$x21 --- |miles standish|

=> ("Miles Standish" "Cotton Mather")

Algernon for Expert Systems DRAFT: 18 January 1994 15

3 Example: Forward- and Backward-Chaining Inference

This example creates a more extensive theory of family relationships than were necessary for the
John Alden story.

3.1 Taxonomy

Most of this taxonomy reiterates what is already declared in the background knowledge base, but
it does no harm to repeat it, and it clari�es the assumptions we are depending on.

(tell '((:taxonomy (things

(objects

(physical-objects

(people))

(physical-attributes

(genders male female)))))))

3.2 Slots

We de�ne a set of family relationships. Some are gender-speci�c specializations of others. Some
can be deduced from combinations of the others.

(tell '((:slot child (people people))

(:slot son (people people))

(:slot daughter (people people))

(:slot parent (people people) :cardinality 2 :inverse child)

(:slot father (people people) :cardinality 1)

(:slot mother (people people) :cardinality 1)

(:slot sibling (people people) :inverse sibling)

(:slot brother (people people))

(:slot sister (people people))

(:slot grandchild (people people))

(:slot grandson (people people))

(:slot grandaughter (people people))

(:slot grandparent (people people) :cardinality 4 :inverse grandchild)

(:slot grandfather (people people) :cardinality 2)

(:slot grandmother (people people) :cardinality 2)

(:slot uncle (people people))

(:slot aunt (people people))))

3.3 Rules

Gender-speci�c relations are tightly connected by matched forward- and backward-chaining rules
to their gender-neutral counterparts.

Algernon for Expert Systems DRAFT: 18 January 1994 16

(tell '((:rules people

((father ?x ?f) -> (parent ?x ?f) (gender ?f male))

((father ?x ?f) <- (parent ?x ?f) (gender ?f male))

((mother ?x ?f) -> (parent ?x ?f) (gender ?f female))

((mother ?x ?f) <- (parent ?x ?f) (gender ?f female))

((son ?x ?s) -> (child ?x ?s) (gender ?s male))

((son ?x ?s) <- (child ?x ?s) (gender ?s male))

((daughter ?x ?d) -> (child ?x ?d) (gender ?d female))

((daughter ?x ?d) <- (child ?x ?d) (gender ?d female))

((brother ?x ?b) -> (sibling ?x ?b) (gender ?b male))

((brother ?x ?b) <- (sibling ?x ?b) (gender ?b male))

((sister ?x ?b) -> (sibling ?x ?b) (gender ?b female))

((sister ?x ?b) <- (sibling ?x ?b) (gender ?b female))

((grandfather ?x ?gf) -> (grandparent ?x ?gf) (gender ?gf male))

((grandfather ?x ?gf) <- (grandparent ?x ?gf) (gender ?gf male))

((grandmother ?x ?gf) -> (grandparent ?x ?gf) (gender ?gf female))

((grandmother ?x ?gf) <- (grandparent ?x ?gf) (gender ?gf female))

((grandson ?x ?gs) -> (grandchild ?x ?gs) (gender ?gs male))

((grandson ?x ?gs) <- (grandchild ?x ?gs) (gender ?gs male))

((grandaughter ?x ?gs) -> (grandchild ?x ?gs) (gender ?gs female))

((grandaughter ?x ?gs) <- (grandchild ?x ?gs) (gender ?gs female)))))

More complex rules show how to infer some relations from others. Note that it isn't correct to
say that one relation is de�ned in terms of more primitive relations. Rather, there is a network
of inferences that link relations together. For example, the uncle relation can be inferred from
parent and brother, or from aunt and husband, but it can also be asserted without commitment
to which type of relation forms the intermediate link.

The :neq special form succeeds if two frames are not identical, and is necessary here to de�ne the
relation sibling. These rules demonstrate the use of embedded terms such as (father (parent ?a) ?c)

as an abbreviation for (parent ?a ?b) (father ?b ?c).

(tell '((:rules people

((grandfather ?a ?c) <- (father (parent ?a) ?c))

((grandmother ?a ?c) <- (mother (parent ?a) ?c))

((grandson ?a ?c) <- (son (child ?a) ?c))

((grandaughter ?a ?c) <- (daughter (child ?a) ?c))

((sibling ?x ?y) <- (child (parent ?x) ?y) (:neq ?x ?y))

;; Aunt and Uncle are a bit different (there is no unisex term):

Algernon for Expert Systems DRAFT: 18 January 1994 17

((uncle ?x ?u) -> (gender ?u male))

((aunt ?x ?a) -> (gender ?a female))

((uncle ?x ?u) <- (brother (parent ?x) ?u))

((uncle ?x ?u) <- (husband (aunt ?x) ?u))

((aunt ?x ?a) <- (sister (parent ?x) ?a))

((aunt ?x ?a) <- (wife (uncle ?x) ?a))

((husband ?w ?h)

<-

(gender ?w female) (spouse ?w ?h) (gender ?h male))

((wife ?h ?w)

<-

(gender ?h male) (spouse ?h ?w) (gender ?w female)))))

3.4 Facts

Although our simple theory is obviously inadequate to do justice to the complexities of real life,
we create a set of frames to represent some of the members of the British royal family and their
relationships.

Consider two alternate ways to make these assertions:

1. by creating frames, binding them to variables, and asserting the relationships via the variable
bindings;

2. by creating frames with mnemonically-chosen internal names, then relying on the syntactic
processor to replace the internal names with references to the frames themselves.

(tell '((:create ?ch Charles)

(:create ?di Diana)

(:create ?ha Harry)

(:create ?wi William)

(:create ?ph Philip)

(:create ?el Elizabeth)

(:create ?an Andrew)

(:create ?sa Sarah)

(wife ?ch ?di)

(son ?ch ?ha)

(son ?ch ?wi)

(son ?di ?ha)

(son ?di ?wi)

(father ?ch ?ph)

(mother ?ch ?el)

(wife ?ph ?el)

(son ?ph ?an)

(son ?el ?an)

(wife ?an ?sa)))

(tell '((:create ?ch Charles)

(:create ?di Diana)

(:create ?ha Harry)

(:create ?wi William)

(:create ?ph Philip)

(:create ?el Elizabeth)

(:create ?an Andrew)

(:create ?sa Sarah)))

(tell '((wife Charles Diana)

(son Charles Harry)

(son Charles William)

(son Diana Harry)

(son Diana William)

(father Charles Philip)

(mother Charles Elizabeth)

(wife Philip Elizabeth)

(son Philip Andrew)

(son Elizabeth Andrew)

(wife Sarah Andrew))))

Algernon for Expert Systems DRAFT: 18 January 1994 18

3.5 Queries

Here we ask some questions to get new inferences done. Since both questions are in one path, and
since there is only one answer to each question, we get one set of bindings back.

(ask '((grandfather William ?gf)

(grandmother William ?gm))

:comment "Who are William's grandfathers and grandmothers?")

QUERYING: Who are William's grandfathers and grandmothers?

Result:

Bindings: ?gm --- elizabeth "[elizabeth]"

?gf --- philip "[philip]"

=> T

Here's a similar inference.

(ask '((uncle William ?u)

(aunt William ?v))

:comment "Who are William's aunts and uncles?")

QUERYING: Who are William's aunts and uncles?

Result:

Bindings: ?v --- sarah "[sarah]"

?u --- andrew "[andrew]"

=> T

Here the question has two answers, so we get two bindings back.

(ask '((parent William ?u))

:comment "Who are William's parents?")

QUERYING: Who are William's parents?

Result (1 of 2):

Binding: ?u --- diana "[diana]"

Result (2 of 2):

Binding: ?u --- charles "[charles]"

=> T

In the following, we use a special form, :all-paths, which succeeds if all sets of bindings that
result from the �rst path, also satisfy the second access path.

(ask '((:all-paths ((child Charles ?b)) ((gender ?b male))))

:comment "Are all Charles' children male?")

Algernon for Expert Systems DRAFT: 18 January 1994 19

QUERYING: Are all Charles' children male?

=> T

(ask '((:all-paths ((child Charles ?b)) ((gender ?b female))))

:comment "Are all Charles' children female?")

QUERYING: Are all Charles' children female?

Query failed.

=> NIL

Algernon for Expert Systems DRAFT: 18 January 1994 20

4 A Simple Expert System: Does John Have The Flu?

This example presents a very simple knowledge-based system using backward-chaining rules to
diagnose diseases.

4.1 Taxonomy and Slots

People have symptoms and diseases, and diseases are associated with symptoms. This requires us
to de�ne the appropriate sets, with a few illustrative individual diseases and symptoms.

(tell '((:taxonomy (Objects

(People)

(Diseases Flu Plague)

(Symptoms Fever High-Fever Nausea Nodules)))))

(tell '((:slot has-disease (people diseases))

(:slot has-symptom (people symptoms))

(:slot symptom (diseases symptoms))

(:slot temperature (physical-objects :number) :cardinality 1)))

The meanings of the relations are:

has-disease(p; d) � person p has disease d

has-symptom(p; s) � person p has symptom s

symptom(d; s) � disease d causes symptom s

temperature(x; t) � physical object x has temperature t

4.2 Rules { Simple

The simplest approach to diagnosis is to write a set of special-purpose rules for each disease,
specifying when we can conclude that a patient has the disease.

(tell '((:rules People

((has-disease ?x Flu) <- (has-symptom ?x fever) (has-symptom ?x nausea))

((has-disease ?x Plague) <- (has-symptom ?x high-fever) (has-symptom ?x nodules))

)))

These rules will be invoked on a query such as ((has-disease ?p ?d)), and will chain back-
ward to query the symptoms of ?p. Therefore, we need rules to conclude symptoms.

(tell '((:rules People

((has-symptom ?p fever) <- (temperature ?p ?t) (:test (> ?t 99)))

((has-symptom ?p high-fever) <- (temperature ?p ?t) (:test (> ?t 102)))

((has-symptom ?p nausea) <- (:ask (has-symptom ?p nausea)))

((has-symptom ?p nodules) <- (:ask (has-symptom ?p nodules)))

((temperature ?p ?t) <- (:ask (temperature ?p ?t))))))

In order to conclude that the patient has the symptom fever, we determine the patient's
temperature t, and test whether t > 99. The :test special form allows us to escape to Lisp to
evaluate a Lisp expression. We can only determine the patient's temperature by asking the user.
Similarly, we can only conclude that the patient has nausea by asking the user.

The :ask special form is a trivial user interface, used only for tutorial purposes. We will describe
the interfaces with Lisp and with the user in the next section.

Algernon for Expert Systems DRAFT: 18 January 1994 21

4.3 Queries Based on Simple Rules

We can test these rules with a query that �nds or creates a frame for a person given a one-symbol
name, then asks what diseases that person has.

(defun dx-patient (name)

(ask `((:the ?p (name ?p ,(string name)) (isa ?p People))

(has-disease ?p ?d))

:comment "What does the patient have?"

:collect '(?p has ?d)))

Frank, George and Harry all present with fever, but turn out to have di�erent diagnoses. The
rules for the two diseases backchain to the rules for fever or high-fever, which in turn backchain to
the rule for temperature, which queries the user. In Frank's case, his fever is low enough that the
rule for plague fails without asking about nodules.

> (dx-patient 'frank)

Give me a value for ?t in (temperature frank ?t): 100

Is it true that (has-symptom frank nausea)? (Yes or No) yes

((FRANK HAS FLU))

George is asked about nodules, and indeed has the plague, but at least avoids the u.

> (dx-patient 'george)

Give me a value for ?t in (temperature george ?t): 103

Is it true that (has-symptom george nodules)? (Yes or No) yes

Is it true that (has-symptom george nausea)? (Yes or No) no

((GEORGE HAS PLAGUE))

Poor Harry has both the plague and the u.

> (dx-patient 'harry)

Give me a value for ?t in (temperature harry ?t): 104

Is it true that (has-symptom harry nodules)? (Yes or No) yes

Is it true that (has-symptom harry nausea)? (Yes or No) yes

((HARRY HAS PLAGUE) (HARRY HAS FLU))

It can be instructive to follow the \Logic Trace" of the deduction by which Harry was diagnosed.

algy> tl

Trace level = :LOGIC.

algy> (dx-patient 'harry)

** Beginning logic Trace **

Querying: (:the (?j) (name ?j "harry") (isa ?j people)).

Querying: (name ?j "harry").

Query failed.

Creating new frame: harry.

Asserting: (name harry "harry").

Inserting new value (isa harry things).

Algernon for Expert Systems DRAFT: 18 January 1994 22

Inserting new value (name harry "harry").

Assert succeeded: (name harry "harry").

Asserting: (isa harry people).

Inserting new value (isa harry people).

Applying: ((isa harry people) -> (isa harry objects)).

Querying: (isa harry people).

Query succeeded: (isa harry people).

Asserting: (isa harry objects).

Inserting new value (isa harry objects).

Applying: ((isa harry objects) -> (isa harry things)).

Querying: (isa harry objects).

Query succeeded: (isa harry objects).

Asserting: (isa harry things).

Value already known (isa harry things).

Assert succeeded: (isa harry things).

Rule applied.

Assert succeeded: (isa harry objects).

Rule applied.

Applying: ((isa harry people) -> (isa harry physical-objects)).

Querying: (isa harry people).

Query succeeded: (isa harry people).

Asserting: (isa harry physical-objects).

Inserting new value (isa harry physical-objects).

Applying: ((isa harry physical-objects) -> (isa harry objects)).

Querying: (isa harry physical-objects).

Query succeeded: (isa harry physical-objects).

Asserting: (isa harry objects).

Value already known (isa harry objects).

Assert succeeded: (isa harry objects).

Rule applied.

Assert succeeded: (isa harry physical-objects).

Rule applied.

Assert succeeded: (isa harry people).

Query succeeded: (:the (harry) (name harry "harry") (isa harry people)).

(:the (?j) (name ?j "harry") (isa ?j people))

Querying: (has-disease harry ?d).

Creating new frame: ri-0.

Creating new frame: ri-1.

Applying: ((has-disease harry plague) <- (has-symptom harry high-fever)

(has-symptom harry nodules)).

Querying: (has-symptom harry high-fever).

Creating new frame: ri-2.

Applying: ((has-symptom harry high-fever) <- (temperature harry ?t)

(:test (> ?t 102))).

Querying: (temperature harry ?t).

Creating new frame: ri-3.

Applying: ((temperature harry ?t) <- (:ask (temperature harry ?t))).

Querying: (:ask (temperature harry ?t)).

Give me a value for ?t in (temperature harry ?t): 104

Asserting: (temperature harry 104).

Inserting new value (temperature harry 104).

Algernon for Expert Systems DRAFT: 18 January 1994 23

Assert succeeded: (temperature harry 104).

Query succeeded: (:ask (temperature harry 104)).

Asserting: (temperature harry 104).

Value already known (temperature harry 104).

Assert succeeded: (temperature harry 104).

Rule applied.

Query succeeded: (temperature harry 104).

Querying: (:test (> 104 102)).

Query succeeded: (:test (> 104 102)).

Asserting: (has-symptom harry high-fever).

Inserting new value (has-symptom harry high-fever).

Assert succeeded: (has-symptom harry high-fever).

Rule applied.

Query succeeded: (has-symptom harry high-fever).

Querying: (has-symptom harry nodules).

Creating new frame: ri-4.

Applying: ((has-symptom harry nodules) <- (:ask (has-symptom harry

nodules))).

Querying: (:ask (has-symptom harry nodules)).

Is it true that (has-symptom harry nodules)? (Yes or No) yes

Asserting: (has-symptom harry nodules).

Inserting new value (has-symptom harry nodules).

Assert succeeded: (has-symptom harry nodules).

Query succeeded: (:ask (has-symptom harry nodules)).

Asserting: (has-symptom harry nodules).

Value already known (has-symptom harry nodules).

Assert succeeded: (has-symptom harry nodules).

Rule applied.

Query succeeded: (has-symptom harry nodules).

Asserting: (has-disease harry plague).

Inserting new value (has-disease harry plague).

Assert succeeded: (has-disease harry plague).

Rule applied.

Applying: ((has-disease harry flu) <- (has-symptom harry fever)

(has-symptom harry nausea)).

Querying: (has-symptom harry fever).

Creating new frame: ri-5.

Applying: ((has-symptom harry fever) <- (temperature harry ?t)

(:test (> ?t 99))).

Querying: (temperature harry ?t).

Query succeeded: (temperature harry 104).

Querying: (:test (> 104 99)).

Query succeeded: (:test (> 104 99)).

Asserting: (has-symptom harry fever).

Inserting new value (has-symptom harry fever).

Assert succeeded: (has-symptom harry fever).

Rule applied.

Query succeeded: (has-symptom harry fever).

Querying: (has-symptom harry nausea).

Creating new frame: ri-6.

Applying: ((has-symptom harry nausea) <- (:ask (has-symptom harry nausea))).

Algernon for Expert Systems DRAFT: 18 January 1994 24

Querying: (:ask (has-symptom harry nausea)).

Is it true that (has-symptom harry nausea)? (Yes or No) yes

Asserting: (has-symptom harry nausea).

Inserting new value (has-symptom harry nausea).

Assert succeeded: (has-symptom harry nausea).

Query succeeded: (:ask (has-symptom harry nausea)).

Asserting: (has-symptom harry nausea).

Value already known (has-symptom harry nausea).

Assert succeeded: (has-symptom harry nausea).

Rule applied.

Query succeeded: (has-symptom harry nausea).

Asserting: (has-disease harry flu).

Inserting new value (has-disease harry flu).

Assert succeeded: (has-disease harry flu).

Rule applied.

Query succeeded: (has-disease harry flu) (has-disease harry plague).

(has-disease ?j ?d)

** End logic Trace **

((HARRY HAS PLAGUE) (HARRY HAS FLU))

4.4 Rules { Slightly Less Simple

It might be desirable to organize the knowledge in the Algernon KB in a more modular way.
We will exploit the backlink from the set Diseases to the individual known diseases. The

:taxonomy form asserts explicit links from sets to the speci�ed elements, Flu and Plague. However,
in case we learn about more diseases, we provide a rule to assert the backlink from an isa relation.

(tell '((:rules Diseases

((isa ?d Diseases) -> (member Diseases ?d)))))

In general, the \upward" isa relation, pointing from an element to a set it belongs to, is not
backlinked to the \downward" member relation. Some sets (e.g. Things or People) could have
large numbers of elements. The access-limited philosophy of Algernon discourages inferences that
scan over large numbers of elements.

We can then formulate a single general-purpose rule that says that a person has a disease if he
or she has every symptom of the disease. (Obviously, neither of these approaches is very realistic.)

(tell '((:rules People

((has-disease ?x ?d)

<-

(member Diseases ?d)

(:all-paths ((symptom ?d ?s)) ((has-symptom ?x ?s)))))))

Within this approach, we can specify the symptoms caused by a disease, not in a rule associated
with the set People, but as part of the declarative description of the disease itself.

(tell '((symptom Flu Fever) (symptom Plague High-Fever)

(symptom Flu Nausea) (symptom Plague Nodules)))

Algernon for Expert Systems DRAFT: 18 January 1994 25

4.5 Queries { Slightly Less Simple Rules

Diagnosing the same three patients, we get the same diagnoses, but the order of questions is
somewhat di�erent, determined by the way the symptoms are stored in the symptom slot of the
disease frames.

> (dx-patient 'frank)

Is it true that (has-symptom frank nodules)? (Yes or No) no

Is it true that (has-symptom frank nausea)? (Yes or No) yes

Give me a value for ?t in (temperature frank ?t): 100

((FRANK HAS FLU))

> (dx-patient 'george)

Is it true that (has-symptom george nodules)? (Yes or No) yes

Give me a value for ?t in (temperature george ?t): 103

Is it true that (has-symptom george nausea)? (Yes or No) no

((GEORGE HAS PLAGUE))

> (dx-patient 'harry)

Is it true that (has-symptom harry nodules)? (Yes or No) yes

Give me a value for ?t in (temperature harry ?t): 104

Is it true that (has-symptom harry nausea)? (Yes or No) yes

((HARRY HAS PLAGUE) (HARRY HAS FLU))

The rules contained explicit sequencing information that guaranteed that Frank was not asked
about nodules after his relatively low fever made that question irrelevant. A di�erent ordering of
the disease descriptions gives a better order of questions, and eliminates the irrelevant question,
but storage order within a slot is not a semantic property of the knowledge base, and cannot be
relied on. Methods for ensuring a desired sequence will be discussed in section 6.

For comparison with the previous trace, here is a trace of Harry's diagnosis, using the slightly
less verbose \Trace Interesting" mode.

algy> ti

Trace level = :BASIC.

algy> (dx-patient 'harry)

** Beginning basic Trace **

Creating new frame: harry.

Inserting new value (isa harry things).

Inserting new value (name harry "harry").

Inserting new value (isa harry people).

Applying: ((isa harry people) -> (isa harry objects)).

Inserting new value (isa harry objects).

Applying: ((isa harry objects) -> (isa harry things)).

Rule applied.

Rule applied.

Applying: ((isa harry people) -> (isa harry physical-objects)).

Inserting new value (isa harry physical-objects).

Algernon for Expert Systems DRAFT: 18 January 1994 26

Applying: ((isa harry physical-objects) -> (isa harry objects)).

Rule applied.

Rule applied.

Creating new frame: ri-13.

Applying: ((has-disease harry ?d) <- (member diseases ?d)

(:all-paths ((symptom ?d ?s))

((has-symptom harry ?s)))).

Inserting new value (query-queue set-partition (member diseases ?d)).

Creating new frame: ri-14.

Applying: ((has-symptom harry nodules) <- (:ask (has-symptom harry nodules))).

Is it true that (has-symptom harry nodules)? (Yes or No) yes

Inserting new value (has-symptom harry nodules).

Rule applied.

Creating new frame: ri-15.

Applying: ((has-symptom harry high-fever) <- (temperature harry ?t)

(:test (> ?t 102))).

Creating new frame: ri-16.

Applying: ((temperature harry ?t) <- (:ask (temperature harry ?t))).

Give me a value for ?t in (temperature harry ?t): 104

Inserting new value (temperature harry 104).

Rule applied.

Inserting new value (has-symptom harry high-fever).

Rule applied.

Creating new frame: ri-17.

Applying: ((has-symptom harry nausea) <- (:ask (has-symptom harry nausea))).

Is it true that (has-symptom harry nausea)? (Yes or No) yes

Inserting new value (has-symptom harry nausea).

Rule applied.

Creating new frame: ri-18.

Applying: ((has-symptom harry fever) <- (temperature harry ?t)

(:test (> ?t 99))).

Inserting new value (has-symptom harry fever).

Rule applied.

Inserting new value (has-disease harry plague).

Inserting new value (has-disease harry flu).

Rule applied.

** End basic Trace **

((HARRY HAS PLAGUE) (HARRY HAS FLU))

Algernon for Expert Systems DRAFT: 18 January 1994 27

5 Calling Lisp and the User from Algernon

Algernon is embedded in Lisp, so it may be convenient to escape to Lisp for some operations. This
is especially true for operations on Lisp data objects such as numbers, strings, or list structures;
and for interaction with the user.

5.1 Evaluating Lisp Expressions

(:eval expression) Substitute current bindings and evaluate expression for side-
e�ect.

(:test expression) Substitute current bindings and evaluate expression. Opera-
tion succeeds if value is non-nil, and fails otherwise.

The special forms :eval and :test take a Lisp expression including Algernon variables, sub-
stitute any bindings available for the Algernon variables, and evaluate the expression in Lisp.

We have already seen the :test special form used in the rule

((has-symptom ?p fever) <- (temperature ?p ?t) (:test (> ?t 99)))

to test whether the value bound to the variable ?t satis�es a numerical relation.
For this and several following examples, we will use a small family tree and a few properties of

people.

(tell '((:taxonomy (physical-objects

(people Adam Beth Charles Donna Ellen)))))

(tell '((:slot child (people people))

(:slot happy (people booleans) :cardinality 1)

(:slot friendly (people booleans) :cardinality 1)

(:slot age (people :number) :cardinality 1)))

(tell '((child Adam Charles)

(child Adam Donna)

(child Adam Ellen)))

After asserting this information, we use the Algernon interface to inspect the contents of the
frame describing Adam:

algy> vf adam

Adam:

Name: (adam)

Isa: objects physical-objects people things

Child: ellen donna charles

The following query looks up Adam's children and prints their names.

(ask '((child Adam ?kid)

(:eval (format t "~%Adam has a child named ~a." '?kid)))

:comment "Print names of all three children")

Algernon for Expert Systems DRAFT: 18 January 1994 28

On querying the �rst predicate, (child Adam ?kid), the path will branch three ways, one
binding the variable ?kid to each child. Along each branch, the :eval special form will evaluate
the format expression to print a line. Notice that '?kid is quoted in the format expression. This
is because the binding for the Algernon variable ?kid is substituted into the expression before Lisp
evaluates it. Since that binding is an Algernon frame, it will give an error if it is evaluated as a
Lisp symbol, so it must be quoted.

QUERYING: Print names of all three children

Adam has a child named ELLEN.

Adam has a child named DONNA.

Adam has a child named CHARLES.

Result (1 of 3):

Binding: ?kid --- ellen "[ellen]"

Result (2 of 3):

Binding: ?kid --- donna "[donna]"

Result (3 of 3):

Binding: ?kid --- charles "[charles]"

=> T

Now let's query the user (via the Lisp function y-or-n-p) to �nd out whether he or she likes
each child, and assert that the child is happy if so.

(tell '((child Adam ?kid)

(:test (y-or-n-p "Do you like ~a?" '?kid))

(:eval (format t " ~a is happy!" '?kid))

(happy ?kid true))

:comment "Check whether each kid is liked by user.")

This path is asserted rather than queried because we want to assert (happy ?kid true) if the
previous forms succeed, rather than checking whether it is currently known.

In this case, the user likes Ellen and Charles, but not Donna. Two paths from the three-way
branch on (child Adam ?kid) succeed, while the other fails at the :test. Notice that the order
in which the questions are asked and results are printed demonstrates that branches of the same
path are followed in parallel.

ASSERTING: Check whether each kid is liked by user.

Do you like ELLEN? (Y or N): y

Do you like DONNA? (Y or N): n

Do you like CHARLES? (Y or N): y

ELLEN is happy! CHARLES is happy!

Result (1 of 2):

Binding: ?kid --- ellen "[ellen]"

Result (2 of 2):

Algernon for Expert Systems DRAFT: 18 January 1994 29

Binding: ?kid --- charles "[charles]"

=> T

After this interaction, we view the three frames and verify that, indeed, Ellen and Charles are
now known to be happy. Although we could not infer that Donna is happy, we don't know that
she is unhappy.

This illustrates an important principle of user-interface design: the user must always have a
way to refuse to answer. In this case, we satis�ed this requirement by interpreting a \No" answer
to y-or-n-p as providing no information.

algy> vf ellen

Ellen:

Name: (ellen)

Isa: objects physical-objects people things

Happy: true

algy> vf donna

Donna:

Name: (donna)

Isa: objects physical-objects people things

algy> vf charles

Charles:

Name: (charles)

Isa: objects physical-objects people things

Happy: true

5.2 Returning Values from Lisp to Algernon

When a value is returned for a Lisp expression, we may want to bind that value to an Algernon
variable, or even to branch on a list of bindings. These capabilities are provided by the special
forms :bind and :branch.

(:bind vars expression) Substitute current bindings into expression and evaluate.
Unify vars with result. Continue if uni�cation succeeds; fail
otherwise.

(:branch vars expression) Substitute current bindings into expression and evaluate.
Unify vars with each element of resulting list. Continue along
any path where uni�cation succeeds; fail otherwise.

Suppose we have a Lisp function that returns a list structure.

(defun lists-of-values ()

'((1 2 3) (4 5 6) (7 8 9)))

We can evaluate (lists-of-values) and use :bind to capture the resulting list as the binding
of an Algernon variable.

Algernon for Expert Systems DRAFT: 18 January 1994 30

(ask '((:bind ?val (lists-of-values)))

:comment ":BIND elements of a list.")

QUERYING: :BIND elements of a list.

Result:

Binding: ?val --- ((1 2 3) (4 5 6) (7 8 9))

=> T

In a similar construction, :branch will treat the elements of the list as alternate bindings for
the variable.

(ask '((:branch ?val (lists-of-values)))

:comment ":BRANCH on elements of a list.")

QUERYING: :BRANCH on elements of a list.

Result (1 of 3):

Binding: ?val --- (1 2 3)

Result (2 of 3):

Binding: ?val --- (4 5 6)

Result (3 of 3):

Binding: ?val --- (7 8 9)

=> T

Since the vars argument to :bind and :branch is uni�ed against the value of the Lisp expression,
it can be used for pattern matching and destructuring of values.

Suppose we are receiving information that we must �lter and analyze.

(defun gossip ()

'((Tom loves Mary)

(Bill hates Joe)

(Nancy loves Sam)))

We can branch on each line of the information stream, succeed only at lines with verb \loves",
and identify subject and object in each line. Here we demonstrate two ways to do this task.

(ask '((:branch ?line (gossip))

(:bind (?subj loves ?obj) '?line))

:comment ":BIND to test and destructure")

(ask '((:branch (?subj loves ?obj) (gossip)))

:comment ":BRANCH to test and destructure")

QUERYING: :BIND to test and destructure

Algernon for Expert Systems DRAFT: 18 January 1994 31

Result (1 of 2):

Bindings: ?obj --- mary

?subj --- tom

?line --- (tom loves mary)

Result (2 of 2):

Bindings: ?obj --- sam

?subj --- nancy

?line --- (nancy loves sam)

=> T

QUERYING: :BRANCH to test and destructure

Result (1 of 2):

Bindings: ?obj --- mary

?subj --- tom

Result (2 of 2):

Bindings: ?obj --- sam

?subj --- nancy

=> T

5.3 The List of Values in a Slot

Algernon normally treats a value b in the slot p of a frame a as an abbreviation for the logical
predicate p(a; b). However, there are times when it is useful to have the list of values (b1 b2 : : : b

n
)

in a given Algernon slot.

(:values frame slot) Return the list of values stored in slot of frame. Can serve as
expression argument to previous forms.

(:non-values frame slot) Return the list of non-values stored in slot of frame. Can
serve as expression argument to previous forms.

(:funcall function expression+) Apply the Lisp function function to the arguments
expression+. Can serve as expression argument to previous
forms.

In the following, we obtain the list of Adam's children in order to print it out.

(ask '((:bind ?kids (:values Adam child))

(:eval (format t "~%Adam's children are ~a." '?kids)))

:comment ":BIND the list of values in a slot.")

QUERYING: :BIND the list of values in a slot.

Adam's children are (ELLEN DONNA CHARLES).

Result:

Algernon for Expert Systems DRAFT: 18 January 1994 32

Binding: ?kids --- (ellen "[ellen]" donna "[donna]" charles "[charles]")

=> T

We can also obtain the list of values in a slot to pass it to a Lisp function to compute some
other value, in this case, the number of elements.

(ask '((:bind ?n (:funcall #'length (:values Adam child)))

(:eval (format t "~%Adam has ~a children." '?n)))

:collect '(Adam has ?n children)

:comment ":BIND and :FUNCALL evaluate a Lisp function")

QUERYING: :BIND and :FUNCALL evaluate a Lisp function

Adam has 3 children.

Result:

Binding: ?n --- 3

=> ((ADAM HAS 3 CHILDREN))

5.4 Requesting Information from the User

The Lisp interface special forms make it easy to de�ne functions for interacting with the user to
request information for the Algernon knowledge base.

This section presents a simple user interface, intended to illustrate the basic method and en-
courage you to implement your own more sophisticated interface, tailored to the needs of your
application.

This interface de�nes sets of slots associated with rules that invoke a Lisp function appropriate
to that type of slot, to interact with the user.

� User-ask-slots are slots that automatically request information from the user if it is not
already known. We have two categories at the moment: those that take Boolean values and
those that take numerical values.

(tell '((:taxonomy (Slots

(User-Ask-Slot

(Boolean-Ask-Slots)

(Numerical-Ask-Slots))))))

� Boolean ask-slots have rules (declared with :srules since they are accessed from the slot in
a query or assertion) that call the CommonLisp function y-or-n-p to determine whether the
user knows the truth of a given predicate.

(tell '((:srules Boolean-Ask-Slots

((?p ?x true)

<-

(:test (y-or-n-p "Is it known that ~((~a ~a true)~)?" '?p '?x))))))

Algernon for Expert Systems DRAFT: 18 January 1994 33

� Boolean ask-slots also have a set of forward-chaining rules to �ll out the various equivalent
ways a truth value can be known. (This is clearly redundant. Is it unacceptable? Should
truth values have a canonical representation? Hard to say.)

(tell '((:srules Boolean-Ask-Slots

((?p ?x true) -> (not (?p ?x false)))

((?p ?x false) -> (not (?p ?x true)))

((not (?p ?x true)) -> (?p ?x false))

((not (?p ?x false)) -> (?p ?x true)))))

� Numerical-valued ask-slots get their values by calling a function named ask-numerical-value-for.
Its code is provided in the Algernon example �le lisp-interface.lisp. The user is requested
to provide a value. By using the :branch special form, the rule can fail if the user refuses to
provide a value.

(tell '((:srules Numerical-Ask-Slots

((?p ?f ?v)

<-

(:branch ?v (ask-numerical-value-for '?v '(?p ?f ?v)))))))

� There is also a function named select-option in the Algernon example �le lisp-interface.lisp.
It allows Algernon to present the user with a menu of options.

We demonstrate these features with some more interaction regarding Adam's family. We assert
that the slots friendly and age belong to sets that will allow them to inherit the interaction rules
above.

(tell '((isa (:slot friendly) Boolean-Ask-Slots)

(isa (:slot age) Numerical-Ask-Slots)))

For each of Adam's children, we query whether he or she is friendly. If this is known, we report
the result. This is similar to a previous interaction, but speci�ed on a rule inherited from a set.

(ask '((child Adam ?kid)

(friendly ?kid ?tv)

(:eval (format t "~%Is Adam's child ~a friendly? ~a." '?kid '?tv)))

:comment "Ask the user to provide a truth value.")

QUERYING: Ask the user to provide a truth value.

Is it known that (friendly ellen true)? (Y or N): y

Is it known that (friendly donna true)? (Y or N): n

Is it known that (friendly charles true)? (Y or N): y

Is Adam's child ELLEN friendly? TRUE.

Is Adam's child CHARLES friendly? TRUE.

Result (1 of 2):

Bindings: ?tv --- true "[true]"

Algernon for Expert Systems DRAFT: 18 January 1994 34

?kid --- ellen "[ellen]"

Result (2 of 2):

Bindings: ?tv --- true "[true]"

?kid --- charles "[charles]"

=> T

Next, for each child, ask the user for the child's age. Any non-numerical value counts as refusal
to answer, so the rule and the attempt to query (age ?kid ?n) fail.

(ask '((child Adam ?kid)

(age ?kid ?n)

(:eval (format t "~%~a's age is ~a." '?kid '?n)))

:comment "Ask the user to provide a numerical value.")

QUERYING: Ask the user to provide a numerical value.

Please give me a numerical value for ?n in (age ellen ?n): 12

Please give me a numerical value for ?n in (age donna ?n): no

Please give me a numerical value for ?n in (age charles ?n): 16

ELLEN's age is 12.

CHARLES's age is 16.

Result (1 of 2):

Bindings: ?n --- 12

?kid --- ellen "[ellen]"

Result (2 of 2):

Bindings: ?n --- 16

?kid --- charles "[charles]"

=> T

Finally, we ask the user to select one of a list of options.

(ask '((:eval (format t "~%Which kid is your favorite?"))

(:bind ?options (:values Adam child))

(:branch ?choice (select-option '?options))

(:eval (format t "~%You picked ~a." '?choice)))

:comment "Ask the user to pick one of a given set of options.")

QUERYING: Ask the user to pick one of a given set of options.

Which kid is your favorite?

+------------------------------

| Select one (`0' for none)

Algernon for Expert Systems DRAFT: 18 January 1994 35

+------------------------------

| 1: ELLEN

| 2: DONNA

| 3: CHARLES

+------------------------------

| Select item number (1 to 3): 1

You picked ELLEN.

Result:

Bindings: ?choice --- ellen "[ellen]"

?options --- (ellen "[ellen]" donna "[donna]" charles "[charles]")

=> T

Algernon for Expert Systems DRAFT: 18 January 1994 36

6 Sequencing Methods

In a logical inference language such as Algernon, explicit attention is required to enforce or predict
the sequence of operations.

6.1 Access Path Sequence

The access-path structure of individual rules enforces one type of ordering constraint.
Consider the following rule, taken from an expert system for the diagnosis of headache. It is

invoked for a given patient, bound to the variable ?p, on the assertion (isa ?p Block6). Once
the rule is invoked, the access path structure of the antecedent speci�es the order in which the
four predicates are queried. Each predicate backward-chains to an :ask form to query the user,
and the questions are asked in the proper sequence. Forward-chaining rules are invoked to take an
appropriate action in case any of the questions are answered true.

(:rules Block6

((isa ?p Block6)

(flashes/spots-before-eyes-at-onset ?p ?tv1)

(one-eye-red/tearful ?p ?tv2)

(weakness-of-hand/arm/leg ?p ?tv3)

(difficulty-speaking ?p ?tv4)

->

(isa ?p Block7))

((flashes/spots-before-eyes-at-onset ?p True) -> (Dx ?p vascular-HA))

((one-eye-red/tearful ?p True) -> (count-blues ?p True))

((weakness-of-hand/arm/leg ?p True) -> (reds ?p True))

((difficulty-speaking ?p True) -> (reds ?p True)))

(:rules Patients

((flashes/spots-before-eyes-at-onset ?p ?tv) <- (:ask (flashes/spots-before-eyes-at-onset ?p ?tv)))

((one-eye-red/tearful ?p ?tv) <- (:ask (one-eye-red/tearful ?p ?tv)))

((weakness-of-hand/arm/leg ?p ?tv) <- (:ask (weakness-of-hand/arm/leg ?p ?tv)))

((difficulty-speaking ?p ?tv) <- (:ask (difficulty-speaking ?p ?tv))))

6.2 Block-to-Block Sequence

The overall structure of the Headache Expert System is enforced by the logical ordering on a set of
blocks, each of which is associated with a set of questions. The above example shows the questions
associated with Block6.

The blocks are represented as subsets of Patients. When the patient is asserted to be in a given
block, the rules associated with that block are �red, as if-added rules triggered by (isa ?p Blockn).
When the block is complete, (isa ?p Blockn+1) is asserted. Thus, the patient accumulates mem-
bership in an increasing set of blocks. Membership is never retracted.

(:taxonomy (Patients

. . .

Algernon for Expert Systems DRAFT: 18 January 1994 37

(Block6)

(Block7)

. . .))

This control structure works provided that the blocks are organized in a loop-free transition
net, rather a general �nite-state machine. The strategy is consistent with the monotonic nature of
Algernon, where information is only accumulated.

6.3 Counters

Counting is a non-monotonic operation, since the value of the counter is replaced by a new value.
This makes it slightly awkward in Algernon, which is primarily oriented towardmonotonic inference.
However, by carefully using the non-monotonic :clear-slot form, we can implement a counter.

(tell '((:taxonomy (Things

(Counters)))))

(tell '((:slot increment (Counters Booleans) :cardinality 1)

(:slot current-count (Counters :number) :cardinality 1)))

(tell '((:rules Counters

((increment ?ctr true)

(current-count ?ctr ?n)

(:bind ?m (+ ?n 1))

->

(:clear-slot ?ctr current-count)

(:clear-slot ?ctr increment)

(current-count ?ctr ?m)))))

The forward-chaining rule to increment a counter c is invoked by asserting (increment c true).
It binds a variable to the current count and computes the next value. In the consequent of the rule,
it clears the count and asserts the next value. It also clears the predicate (increment c true) so
that the next assertion of that value will invoke the forward-chaining rule again.

Testing it with the following assertion,

(tell '((:a ?c (isa ?c Counters))

(current-count ?c 0)

(current-count ?c ?n1)

(:eval (format t "~%Current counter value is ~a." ?n1))

(increment ?c true)

(current-count ?c ?n2)

(:eval (format t "~%Current counter value is ~a." ?n2))

(increment ?c true)

(current-count ?c ?n)

(:eval (format t "~%Current counter value is ~a." ?n)))

gives the following output.

ASSERTING: Create and test a counter

Algernon for Expert Systems DRAFT: 18 January 1994 38

Current counter value is 0.

Current counter value is 1.

Current counter value is 2.

Result:

Bindings: ?n --- 2

?n2 --- 1

?n1 --- 0

?c --- frame1 "[nil]"

Created frame: frame1

=> T

T

algy> vf frame1

Frame1:

Isa: things counters

Current-count: 2

